
 evopayments.com

©2018 EVO Payments, Inc.

DiamondCloud
API Integration Guide

US Edition

Updated: 4/28/2023

 Proprietary & Confidential 1

Table of Contents
DIAMONDCLOUD 1

WHAT IS DIAMONDCLOUD? 2

ISV CONSIDERATIONS 2

PROCESSING TYPES 2

ANDROID PAYMENT TERMINAL TYPES 2

DIFFERENCES BASED ON TERMINAL/APP 3

Sending Tip Amounts 3

Sending Cashback Amounts 3

TRANSACTION RESULTS HANDLING 3

INSTANT INTEGRATION 4

REQUEST FORMATTING 4

List of Transaction Request Commands 4

Request Responses 5

Request Transaction Status - Details 5

TRANSACTION EXAMPLES 7

Sale – Credit/Debit 7

Reverse/Void – Credit 8

Return – Credit ... 9

BatchClose – Close Payment Terminal

Batch .. 9

Optional Transaction Types 10

PARTIALLY APPROVED TRANSACTION HANDLING 16

QUEUED BILLS INTEGRATION (DEVICE

AND QR/PAYBYTEXT)* 17

CONVERT CHECKS TO JSON 17

Required Field Types 17

Optional Field Types 17

POST CHECK TO CLOUD 18

POST.. 18

Response .. 18

GET STATUS OF CHECKS 20

GET .. 20

Response .. 20

PARTIALLY APPROVED TRANSACTION HANDLING 22

OTHER REST API CALLS 22

Remove/Cancel Check 22

Reverse – Void and Refund (QR/PayByText

only) ... 23

AUTHORIZATION TOKENS24

Example of Token within HTTP Header 24

ERROR RESPONSES – PAYMENT

TERMINAL...25

Transaction is Pending Processing 25

Transaction Failed Offline 25

Transaction Failed Online 25

Transaction Cancelled At Terminal 25

ERROR RESPONSES – DIAMONDCLOUD26

EXAMPLE - CHECK CONVERTED FROM

XML TO JSON ...27

TESTING ENDPOINT28

PRODUCTION ENDPOINT28

 Proprietary & Confidential 2

What is DiamondCloud?
In short, the DiamondCloud provides a simple, easy, and painless integration to the latest certified Android

payment terminals for ISV developers. The cloud offers POS applications to initiate transaction processing

on the Android Payment Terminals with a simplified and hardware manufacturer agnostic RESTful API. The

POS can trigger actions directly on the payment terminal via the cloud or upload bills to the cloud that will

appear as selectable items on the Android Payment Terminal which creates the easiest Pay At Table

processing experience on the market.

ISV Considerations

To get started, consider the different integration options and tailor the integration to your solutions needs

and target customers.

Processing Types
 Instant/Active (retail/counter pay): In the Instant configuration your POS will send one transaction

request to the cloud and this will immediately activate the Android payment to perform the

transaction. For example, sending a $5 Sale request will immediately prompt for card entry on the

Android Payment Terminal.

When to use Instant processing

o Customer facing payment experiences such as payments at the counter and multilane

checkouts. The Android payment terminal can optionally prompt for Cash back or Tip entry.

o Back office non-customer facing payment experiences can also be performed send a

transaction request directly to the Android payment terminal and key a card or perform

other transactions without a customer interaction.

 Queued Bills (PayAtTable): In the queued configuration, your POS may send several checks to the

cloud and the Android payment terminal will display all the open checks for a location on the device

screen so that the staff can select any of the open checks and perform the payment whenever the

check needs to be closed directly on the Android payment device.

When to use Queued Bills Processing

o Customer facing payment experiences away from the POS workstation where orders are

entered. Table Service Restaurants, Salons, and Spas are all ideal for this type of interaction

and payment experience.

o If you plan to enable QR code payments, Pay By Text, or email a URL to a customer, you will

be implementing a queued bill processing integration.

Android Payment Terminal Types
Once integrated, your solution will be able to offer merchants any of the below payment devices that suits

their needs.

 Portable – NEXGO N5, PAX A920, or PAX A77

 Countertop – PAX A80, A35

 Multilane – PAX Aries8

 Proprietary & Confidential 3

Differences based on Terminal/App

Sending Tip Amounts
 NEXGO – when an ISV sends a sale command with a tip included, the tip amount will prompt on the

device and can be changed on the NEXGO device at this prompt.

 PAX - when an ISV sends a sale command with a tip included, the tip amount will NOT prompt on the

device and CANNOT be changed on the PAX device.

Sending Cashback Amounts
 NEXGO – when an ISV sends a sale command with a cashback amount included, the cashback

amount will prompt on the device and can be changed on the NEXGO device at this prompt.

 PAX - when an ISV sends a sale command with a cashback included, the cashback amount will NOT

prompt on the device and CANNOT be changed on the PAX device.

Transaction Results Handling
After a transaction is performed by the Android payment terminal, the response is sent to the

DiamondCloud. The DiamondCloud solution offers 2 ways of handling transaction results/responses getting

back to the integration solution.

 REST API – the POS can perform GET API calls to ‘pull’ the transaction status results. The POS would

do this every 3-5 seconds until the transaction results are available.

 Callback URL – the DiamondCloud service can write all the transaction responses for merchants to

a callback URL (a webpage the integrator hosts that the DiamondCloud log’s responses can be

written to – must be HTTPS).

o NOTE: In order for an integration to match transaction responses to requests from many

different POS endpoints and merchants, the cloud will add source request data to the

responses sent to the Callback URL.
{ "IsvId": "8FB7B0CB2AE242B3BC8F5ED15DDEFAC0",

"InvoiceId": "",

"CloudTxnId": "85DNQ3XKZBK",

"Device": "87654321000401_1",

"Response":{ "Normalized Response fields" }}

 Proprietary & Confidential 4

Instant Integration

Note: Uploading a JSON of a check is not expected in the instant processing environment. The

transactions will use a simple REST API URL string to trigger a transaction on the payment terminal

immediately. Open checks will not be queued or contain line item detail.

Request Formatting
URL //Cloud URL /tomcat /command /{POS_ID} /{transaction}
What it is The URL of the Cloud

environment being

called

Web services

host – always

tomcat

Type of request

being sent.

/command

Assigned ID of the

POS and Payment

Terminal pair- 16

digits

Type of transaction

command being sent.

sale, return, void, etc.

Example //qr.simpletabcloud.com /tomcat /command /1234567890123456 /sale

List of Transaction Request Commands
Command Details

sale
Trigger a sale transaction to occur on the payment terminal. Send amount in the JSON

and optionally include, tip amount, payment token, and cash back.

void
Trigger a void of a sale transaction on the payment terminal. Send the 32 character

transaction id from the sale in the JSON data.

return
Trigger a return transaction on the payment terminal. Send amount in the JSON and

optionally include the payment token.

batchClose Trigger a batch close to occur on the payment terminal.

tip
Trigger a tip adjustment for a previous sale transaction. Send original amount, the tip

amount, and the 32 character transaction id from the sale in the JSON data.

auth
Trigger an auth (pre-auth) transaction on the payment terminal. Send amount in the

JSON and optionally include the payment token.

capture
Trigger a capture (post-auth) transaction on the payment terminal. Send the amount

and the 32 character transaction id from the auth in the JSON data and optionally

include a tip amount

giftActivate
Trigger a gift card activation transaction on the payment terminal. Send the amount in

the JSON data.

giftReload
Trigger a gift card reload (add value) on the payment terminal. Send the amount in the

JSON data.

giftRedeem
Trigger a gift card redeem (sale/purchase) on the payment terminal. Send the amount in

the JSON data.

giftBalance Trigger a gift card balance inquiry on the payment terminal. No added fields needed.

ebtFood
Trigger an EBT Food Stamp sale on the payment terminal. Send the amount in the JSON

data.

ebtCash
Trigger an EBT Cash Benefit sale on the payment terminal. Send the amount in the JSON

data.

ebtBalance Trigger an EBT balance inquiry on the payment terminal. No added fields needed.

ebtReturn Trigger an EBT return on the payment terminal. Send the amount in the JSON data.

test Trigger a test message to appear on the payment terminal.

 Proprietary & Confidential 5

 If the ‘transactionStatus’

returns a value of ‘pending’, the

payment terminal has not completed

processing the customers card

transaction. The POS should repeat

the command Details request every

3-5 seconds until a completion is

returned or the transaction is

cancelled.

 Note: if Payment Tokens are

being supported, be aware the

token is a 72 character value.

Request Responses
Upon successful request submission, the Cloud will respond with an OK message plus an ID value. This

plaintext ID value is the cloud ID which is a unique transaction identifier on the cloud for the request made.

Example:
11ABC22DEF3

The POS should store this ID and use it to query the cloud for the transaction results. The instant

Cloud ID is 11 characters, the queued Cloud ID is 32 characters.

Request Transaction Status - Details
To retrieve the results of transaction requests sent to the payment terminal, the POS will send the

command details api call.

The POS can parse, store and use this info later:

 Print customer receipts.

 Perform transactions like adjustments and void transactions using the original cloud transaction id

value.

 Store the ‘paymentToken’ for use later on the customer’s account online and subscriptions.

GET /command/{POS_ID}/details/{Cloud Transaction ID}

Response:
{

 "merchantId" : "123456789012",

 "merchantName" : "Cloud Pizza",

 "transactionStatus" : "",

 "transactionType" : "AUTH",

 "maskedCard" : "411111xxxxxx4321",

 "cardBrand" : "Visa",

 "entryMethod" : "Chip",

 "dateTime" : "2021-11-24T15:22:33.756",

 "batchNumber" : "0123",

 "transactionId" : "95f1959dd7c040e8ba0afe59d6fb725d",

 "approvalCode" : "A12345",

 "requestAmount" : "15.00",

 "approvedAmount" : "15.00",

 "partialApproval" : "false",

 "tip" : "0.00",

 "cashback" : "0.00",

 "tax" : "",

 "surchargeFee" : "0.00",

 "ebtCashBalance" : "0.00",

 "ebtFoodBalance" : "0.00",

 "giftCardBalance" : "",

 "avsResult" : "",

 "cvdResult" : "",

 "aid" : "A000000025010801",

 "tvr" : "08008000",

 "tsi" : "E800",

 "paymentToken" : "95f1959d-d7c0-40e8-ba0a-fe59d6fb725d1759d7af-306c-43cb-823b-b4391adb54f9"

}

 Proprietary & Confidential 6

Request Field Description Values Field Type
CLOUD URL DiamondCloud URL URL Static URL
POS_ID EVO assigned number

indicating the POS Merchant

& Lane integration.

Specific to each ISV,

Merchant and Lane

16 Char ASCII

id Cloud ID returned after push

function is performed.

Variable 11-32 Char ASCII

Response Field Description Values Field Type

merchantId Merchants processing ID Varied by merchant Up to 16 digits
merchantName Merchant Name Varied by merchant Variable ASCII
transactionStatus Transaction response status APPROVED or

DECLINED

Variable ASCII

transactionType Transaction type performed AUTH, CAPTURE,

RETURN, VOID

Variable alphanumeric

maskedCard Masked card PAN with last 4

digits

X’s followed by last 4

of card.

Variable alphanumeric

cardBrand Card brand used in the

transaction

Visa, MasterCard,

AmericanExpress,

Discover, Debit, EBT

Variable alphanumeric

entryMethod Card account entry method Keyed, swipe, chip,

contactless

Variable alphanumeric

dateTime Date and Time of transaction

(UTC)

YYYY-MM-

DDTHH:MM:SS.SSS

YYYY-MM-DDTHH:MM:SS.SSS

batchNumber Current batch number 4 digit value Numeric
transactionId Transaction ID generated

during authorization

32 character value 32 alphanumeric char

approvalCode Transaction approval code

from issuer

Variable Variable alphanumeric

requestAmount Amount requested for

payment.

00.01 – 999999.99 Variable numeric w/decimal

approvedAmount Amount approved 00.01 – 999999.99 Variable numeric w/decimal
partialApproval Indicator of partial approval true or false Alphanumeric
tip Tip amount added by

cardholder

00.01 – 999999.99 Variable numeric w/decimal

cashback Cashback amount added by

cardholder

00.01 – 999999.99 Variable numeric w/decimal

tax Tax amount processed 00.01 – 999999.99 Variable numeric w/decimal
surchargeFee Surcharge fee processed 00.01 – 999999.99 Variable numeric w/decimal
ebtCashBalance EBT cash benefit balance 00.01 – 999999.99 Variable numeric w/decimal
ebtFoodBalance EBT food stamp balance 00.01 – 999999.99 Variable numeric w/decimal
giftCardBalance Gift card remaining balance 00.01 – 999999.99 Variable numeric w/decimal
avsResult AVS result value if entered Result code and text Variable alphanumeric
cvdResult CVD/CVV result value if

entered

Result code and text Variable alphanumeric

aid Chip card Application AID Card application Variable alphanumeric
tvr Chip card TVR TVR value 10 digit numeric
tsi Chip card TSI TSI value 4 digit numeric
CardholderVerificationMethod Not in use - RFU Not in use NULL
paymentToken Card account payment token Token value 72 character variable

alphanumeric

 Proprietary & Confidential 7

 If payment tokens are being stored and

used, place the token in the panDataToken field

to process the sale using a payment token

instead of requiring card entry.

Transaction Examples

Sale – Credit/Debit
To trigger a Credit or Debit sale on a payment terminal, the POS should send a sale request with an amount.

The DiamondCloud will return a transaction invoice id, the POS will need to store this ID and use it for status

updates and reconciliation.

POST
POST [https://{Cloud URL}/tomcat/command/{POS_ID}/sale] HTTP/1.1

Accept: application/json

Host: [https://{Cloud URL}/]

Content-Type: application/json

{

 "amount": "1.00",

 "panDataToken": "" ,

 "tip_amount": "",

 "cash_back": ""

}

Response
HTTP/1.1 200 OK

Content-Type: application/json; charset=UTF-8

Keep-Alive: timeout=5, max=100

X-XSS-Protection: 1; mode=block, 1; mode=block

Transfer-Encoding: Identity

Referrer-Policy: origin, strict-origin-when-cross-origin

Permissions-Policy: geolocation=(),midi=(),sync-

xhr=(),microphone=(),camera=(),magnetometer=(),gyroscope=(),fullscreen=(self)

Date: Thu, 08 Dec 2022 12:49:46 GMT

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload, max-age=31536000;

includeSubDomains;

Connection: Keep-Alive

X-Content-Type-Options: nosniff

X-Frame-Options: DENY

Vary: Origin,Access-Control-Request-Method,Access-Control-Request-Headers

cloudID

 Proprietary & Confidential 8

Reverse/Void – Credit
To trigger a Credit reversal on a payment terminal, the POS should send a void request with the transaction

ID from the original sale. The DiamondCloud will return an OK response and trigger the payment terminal to

perform a reversal.

Note: The reversal must be sent to the payment terminal used for the original sale transaction. If

that cannot be done, the POS must send a refund request.

POST
POST [https://{Cloud URL}/tomcat/command/{POS_ID}/void] HTTP/1.1

Accept: application/json

Host: [https://{Cloud URL}/]

Content-Type: application/json

{

 "transaction_id": "[cloud ID]"

}

Response
HTTP/1.1 200 OK

Content-Type: application/json; charset=UTF-8

Keep-Alive: timeout=5, max=100

X-XSS-Protection: 1; mode=block, 1; mode=block

Transfer-Encoding: Identity

Referrer-Policy: origin, strict-origin-when-cross-origin

Permissions-Policy: geolocation=(),midi=(),sync-

xhr=(),microphone=(),camera=(),magnetometer=(),gyroscope=(),fullscreen=(self)

Date: Thu, 08 Dec 2022 12:49:46 GMT

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload, max-age=31536000;

includeSubDomains;

Connection: Keep-Alive

X-Content-Type-Options: nosniff

X-Frame-Options: DENY

Vary: Origin,Access-Control-Request-Method,Access-Control-Request-Headers

cloudID

 Proprietary & Confidential 9

 If payment tokens are being stored and

used, place the token in the panDataToken

field to process the return using a payment

token instead of requiring card entry.

Return – Credit
To trigger a Credit Return on a payment terminal, the POS should send a return request with the amount.

POST
POST [https://{Cloud URL}/tomcat/command/{POS_ID}/return] HTTP/1.1

Accept: application/json

Host: [https://{Cloud URL}/]

{

 "amount": "1.00",

 "panDataToken": ""

}

Response
HTTP/1.1 200 OK

Content-Type: application/json; charset=UTF-8

Keep-Alive: timeout=5, max=100

X-XSS-Protection: 1; mode=block, 1; mode=block

Transfer-Encoding: Identity

Referrer-Policy: origin, strict-origin-when-cross-origin

Permissions-Policy: geolocation=(),midi=(),sync-

xhr=(),microphone=(),camera=(),magnetometer=(),gyroscope=(),fullscreen=(self)

Date: Thu, 08 Dec 2022 12:49:46 GMT

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload, max-age=31536000;

includeSubDomains;

Connection: Keep-Alive

X-Content-Type-Options: nosniff

X-Frame-Options: DENY

Vary: Origin,Access-Control-Request-Method,Access-Control-Request-Headers

cloudID

BatchClose – Close Payment Terminal Batch
To trigger a batch close on a payment terminal, the POS should send a batchClose request to the

DiamondCloud API. This will trigger the Android payment terminal to send a batch close request to the

processing system and print a batch report.

POST
POST [https://{Cloud URL}/tomcat/command/{POS_ID}/batchClose] HTTP/1.1

Accept: application/json

Host: [https://{Cloud URL}/]

{}

Response
HTTP/1.1 200 OK

Content-Type: application/json; charset=UTF-8

Keep-Alive: timeout=5, max=100

X-XSS-Protection: 1; mode=block, 1; mode=block

Transfer-Encoding: Identity

Referrer-Policy: origin, strict-origin-when-cross-origin

Permissions-Policy: geolocation=(),midi=(),sync-

xhr=(),microphone=(),camera=(),magnetometer=(),gyroscope=(),fullscreen=(self)

Date: Thu, 08 Dec 2022 12:49:46 GMT

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload, max-age=31536000;

includeSubDomains;

Connection: Keep-Alive

X-Content-Type-Options: nosniff

X-Frame-Options: DENY

Vary: Origin,Access-Control-Request-Method,Access-Control-Request-Headers

cloudID

 Proprietary & Confidential 10

Optional Transaction Types

Tip Adjust – Credit

To trigger a Tip Adjust on a payment terminal, the POS should send a tip request with transaction id, and the

amount.

POST
POST [https://{Cloud URL}/tomcat/command/{POS_ID}/tip] HTTP/1.1

Accept: application/json

Host: [https://{Cloud URL}/]

{

 "tip_amount": "1.00",

 "amount": "10.00",

 "transaction_id": "[cloud ID]"

 }

Response
HTTP/1.1 200 OK

Content-Type: application/json; charset=UTF-8

Keep-Alive: timeout=5, max=100

X-XSS-Protection: 1; mode=block, 1; mode=block

Transfer-Encoding: Identity

Referrer-Policy: origin, strict-origin-when-cross-origin

Permissions-Policy: geolocation=(),midi=(),sync-

xhr=(),microphone=(),camera=(),magnetometer=(),gyroscope=(),fullscreen=(self)

Date: Thu, 08 Dec 2022 12:49:46 GMT

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload, max-age=31536000;

includeSubDomains;

Connection: Keep-Alive

X-Content-Type-Options: nosniff

X-Frame-Options: DENY

Vary: Origin,Access-Control-Request-Method,Access-Control-Request-Headers

cloudID

 Proprietary & Confidential 11

 If payment tokens are being stored and

used, place the token in the panDataToken

field to process the auth using a payment

token instead of requiring card entry.

Auth – Credit

To trigger a Credit Auth on a payment terminal, the POS should send an auth request with an amount. The

DiamondCloud will return a transaction invoice id, the POS will need to store this ID and use it for the

capture request.

POST
POST [https://{Cloud URL}/tomcat/command/{POS_ID}/auth] HTTP/1.1

Accept: application/json

Host: [https://{Cloud URL}/]

{

 "amount": "1.00",

 "panDataToken": ""

}

Response
HTTP/1.1 200 OK

Content-Type: application/json; charset=UTF-8

Keep-Alive: timeout=5, max=100

X-XSS-Protection: 1; mode=block, 1; mode=block

Transfer-Encoding: Identity

Referrer-Policy: origin, strict-origin-when-cross-origin

Permissions-Policy: geolocation=(),midi=(),sync-

xhr=(),microphone=(),camera=(),magnetometer=(),gyroscope=(),fullscreen=(self)

Date: Thu, 08 Dec 2022 12:49:46 GMT

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload, max-age=31536000;

includeSubDomains;

Connection: Keep-Alive

X-Content-Type-Options: nosniff

X-Frame-Options: DENY

Vary: Origin,Access-Control-Request-Method,Access-Control-Request-Headers

cloudID

Capture – Credit

To trigger a Credit Capture on a payment terminal, the POS should send a capture request with transaction

invoice id, and the amount.

POST
POST [https://{Cloud URL}/tomcat/command/{POS_ID}/capture] HTTP/1.1

Accept: application/json

Host: [https://{Cloud URL}/]

{

 "amount": "1.00",

 "transaction_id": "[cloud ID]",

 "tip_amount": ""

}

Response
HTTP/1.1 200 OK

Content-Type: application/json; charset=UTF-8

Keep-Alive: timeout=5, max=100

X-XSS-Protection: 1; mode=block, 1; mode=block

Transfer-Encoding: Identity

Referrer-Policy: origin, strict-origin-when-cross-origin

Permissions-Policy: geolocation=(),midi=(),sync-

xhr=(),microphone=(),camera=(),magnetometer=(),gyroscope=(),fullscreen=(self)

Date: Thu, 08 Dec 2022 12:49:46 GMT

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload, max-age=31536000;

includeSubDomains;

Connection: Keep-Alive

X-Content-Type-Options: nosniff

X-Frame-Options: DENY

Vary: Origin,Access-Control-Request-Method,Access-Control-Request-Headers

cloudID

 Proprietary & Confidential 12

Gift Card Activation

To trigger a Gift Card activation on a payment terminal, the POS should send a giftActivate request with the

amount.

POST
POST [https://{Cloud URL}/tomcat/command/{POS_ID}/giftActivate] HTTP/1.1

Accept: application/json

Host: [https://{Cloud URL}/]

{

 "amount": "1.00"

}

Response
HTTP/1.1 200 OK

Content-Type: application/json; charset=UTF-8

Keep-Alive: timeout=5, max=100

X-XSS-Protection: 1; mode=block, 1; mode=block

Transfer-Encoding: Identity

Referrer-Policy: origin, strict-origin-when-cross-origin

Permissions-Policy: geolocation=(),midi=(),sync-

xhr=(),microphone=(),camera=(),magnetometer=(),gyroscope=(),fullscreen=(self)

Date: Thu, 08 Dec 2022 12:49:46 GMT

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload, max-age=31536000;

includeSubDomains;

Connection: Keep-Alive

X-Content-Type-Options: nosniff

X-Frame-Options: DENY

Vary: Origin,Access-Control-Request-Method,Access-Control-Request-Headers

cloudID

 Proprietary & Confidential 13

Gift Card Reload

To trigger a Gift Card reload on a payment terminal, the POS should send a giftReload request with the

amount.

POST
POST [https://{Cloud URL}/tomcat/command/{POS_ID}/giftReload] HTTP/1.1

Accept: application/json

Host: [https://{Cloud URL}/]

{

 "amount": "1.00"

}

Response
HTTP/1.1 200 OK

Content-Type: application/json; charset=UTF-8

Keep-Alive: timeout=5, max=100

X-XSS-Protection: 1; mode=block, 1; mode=block

Transfer-Encoding: Identity

Referrer-Policy: origin, strict-origin-when-cross-origin

Permissions-Policy: geolocation=(),midi=(),sync-

xhr=(),microphone=(),camera=(),magnetometer=(),gyroscope=(),fullscreen=(self)

Date: Thu, 08 Dec 2022 12:49:46 GMT

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload, max-age=31536000;

includeSubDomains;

Connection: Keep-Alive

X-Content-Type-Options: nosniff

X-Frame-Options: DENY

Vary: Origin,Access-Control-Request-Method,Access-Control-Request-Headers

cloudID

Gift Card Redemption

To trigger a Gift Card redemption (sale) on a payment terminal, the POS should send a giftRedeem request

with the amount.

POST
POST [https://{Cloud URL}/tomcat/command/{POS_ID}/giftRedeem] HTTP/1.1

Accept: application/json

Host: [https://{Cloud URL}/]

{

 "amount": "1.00"

}

Response
HTTP/1.1 200 OK

Content-Type: application/json; charset=UTF-8

Keep-Alive: timeout=5, max=100

X-XSS-Protection: 1; mode=block, 1; mode=block

Transfer-Encoding: Identity

Referrer-Policy: origin, strict-origin-when-cross-origin

Permissions-Policy: geolocation=(),midi=(),sync-

xhr=(),microphone=(),camera=(),magnetometer=(),gyroscope=(),fullscreen=(self)

Date: Thu, 08 Dec 2022 12:49:46 GMT

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload, max-age=31536000;

includeSubDomains;

Connection: Keep-Alive

X-Content-Type-Options: nosniff

X-Frame-Options: DENY

Vary: Origin,Access-Control-Request-Method,Access-Control-Request-Headers

cloudID

 Proprietary & Confidential 14

Gift Card Balance Inquiry

To trigger a Gift Card Balance Inquiry on a payment terminal, the POS should send a giftBalance request.

POST
POST [https://{Cloud URL}/tomcat/command/{POS_ID}/giftBalance] HTTP/1.1

Accept: application/json

Host: [https://{Cloud URL}/]

{}

Response
HTTP/1.1 200 OK

Content-Type: application/json; charset=UTF-8

Keep-Alive: timeout=5, max=100

X-XSS-Protection: 1; mode=block, 1; mode=block

Transfer-Encoding: Identity

Referrer-Policy: origin, strict-origin-when-cross-origin

Permissions-Policy: geolocation=(),midi=(),sync-

xhr=(),microphone=(),camera=(),magnetometer=(),gyroscope=(),fullscreen=(self)

Date: Thu, 08 Dec 2022 12:49:46 GMT

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload, max-age=31536000;

includeSubDomains;

Connection: Keep-Alive

X-Content-Type-Options: nosniff

X-Frame-Options: DENY

Vary: Origin,Access-Control-Request-Method,Access-Control-Request-Headers

cloudID

EBT Food Stamp & Cash Benefit Sale

To trigger an EBT Food Stamp Sale or Cash Benefit Sale on a payment terminal, the POS should send

ebtFood or ebtCash request with the amount.

POST
POST [https://{Cloud URL}/tomcat/command/{POS_ID}/ebtFood] HTTP/1.1

Accept: application/json

Host: [https://{Cloud URL}/]

{

 "amount": "1.00"

}

Response
HTTP/1.1 200 OK

Content-Type: application/json; charset=UTF-8

Keep-Alive: timeout=5, max=100

X-XSS-Protection: 1; mode=block, 1; mode=block

Transfer-Encoding: Identity

Referrer-Policy: origin, strict-origin-when-cross-origin

Permissions-Policy: geolocation=(),midi=(),sync-

xhr=(),microphone=(),camera=(),magnetometer=(),gyroscope=(),fullscreen=(self)

Date: Thu, 08 Dec 2022 12:49:46 GMT

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload, max-age=31536000;

includeSubDomains;

Connection: Keep-Alive

X-Content-Type-Options: nosniff

X-Frame-Options: DENY

Vary: Origin,Access-Control-Request-Method,Access-Control-Request-Headers

cloudID

 Proprietary & Confidential 15

EBT Balance Inquiry

To trigger an EBT Balance Inquiry on a payment terminal, the POS should send an ebtBalance request.

POST
POST [https://{Cloud URL}/tomcat/command/{POS_ID}/ebtBalance] HTTP/1.1

Accept: application/json

Host: [https://{Cloud URL}/]

{}

Response
HTTP/1.1 200 OK

Content-Type: application/json; charset=UTF-8

Keep-Alive: timeout=5, max=100

X-XSS-Protection: 1; mode=block, 1; mode=block

Transfer-Encoding: Identity

Referrer-Policy: origin, strict-origin-when-cross-origin

Permissions-Policy: geolocation=(),midi=(),sync-

xhr=(),microphone=(),camera=(),magnetometer=(),gyroscope=(),fullscreen=(self)

Date: Thu, 08 Dec 2022 12:49:46 GMT

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload, max-age=31536000;

includeSubDomains;

Connection: Keep-Alive

X-Content-Type-Options: nosniff

X-Frame-Options: DENY

Vary: Origin,Access-Control-Request-Method,Access-Control-Request-Headers

cloudID

EBT Food Stamp Return

To trigger an EBT Food Stamp Return on a payment terminal, the POS should send an ebtReturn request

with the amount.

POST
POST [https://{Cloud URL}/tomcat/command/{POS_ID}/ebtReturn] HTTP/1.1

Accept: application/json

Host: [https://{Cloud URL}/]

{

 "amount": "1.00"

}

Response
HTTP/1.1 200 OK

Content-Type: application/json; charset=UTF-8

Keep-Alive: timeout=5, max=100

X-XSS-Protection: 1; mode=block, 1; mode=block

Transfer-Encoding: Identity

Referrer-Policy: origin, strict-origin-when-cross-origin

Permissions-Policy: geolocation=(),midi=(),sync-

xhr=(),microphone=(),camera=(),magnetometer=(),gyroscope=(),fullscreen=(self)

Date: Thu, 08 Dec 2022 12:49:46 GMT

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload, max-age=31536000;

includeSubDomains;

Connection: Keep-Alive

X-Content-Type-Options: nosniff

X-Frame-Options: DENY

Vary: Origin,Access-Control-Request-Method,Access-Control-Request-Headers

cloudID

 Proprietary & Confidential 16

Pairing/Connection Test

To test the connection to the payment terminal, the POS can send a test transaction to the payment

terminal. The Payment terminal will display ‘Connect Test Successful’ to confirm functionality.

POST
POST [https://{Cloud URL}/tomcat/command/{POS_ID}/test] HTTP/1.1

Accept: application/json

Host: [https://{Cloud URL}/]

{}

Response
HTTP/1.1 200 OK

Content-Type: application/json; charset=UTF-8

Keep-Alive: timeout=5, max=100

X-XSS-Protection: 1; mode=block, 1; mode=block

Transfer-Encoding: Identity

Referrer-Policy: origin, strict-origin-when-cross-origin

Permissions-Policy: geolocation=(),midi=(),sync-

xhr=(),microphone=(),camera=(),magnetometer=(),gyroscope=(),fullscreen=(self)

Date: Thu, 08 Dec 2022 12:49:46 GMT

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload, max-age=31536000;

includeSubDomains;

Connection: Keep-Alive

X-Content-Type-Options: nosniff

X-Frame-Options: DENY

Vary: Origin,Access-Control-Request-Method,Access-Control-Request-Headers

cloud ID

Partially Approved Transaction Handling
Many Retail and Restaurant merchant category codes are required to accept partially approved

transactions. A partially approved transaction will be indicated by the transaction response details in the

“partialApproval” field. When this occurs the user at the terminal can opt to continue the transaction and

pay the balance with another card. When the remaining balance is paid, the cloud will return the second

transaction results using the same Cloud ID. This overwrites the first response where the partialApproval

occurred.

 Integrations using the Callback URL for responses will see 2 responses with the same cloud ID

returned.

 Integrations using the API to query the Cloud, will see the first response and should continue to

query the same Cloud ID for the second transaction to complete.

o Note if the user/customer opts to reverse the partially approved transaction or pay using

another method that does not happen on the payment terminal (ie Cash), the Integration

should mark the transaction completed and cease performing a query on the API.

 Proprietary & Confidential 17

Queued Bills Integration (Device and QR/PayByText)*

Convert Checks to JSON
The first step for the POS developer is to convert and provide a receipt, check, or bill in the JSON format. For

anyone unfamiliar with JSON, there are free online developer resources where data in XML, HTML, or even

CSV can be converted into JSON (see an example in this document).

Every POS system is different, but our machine learning development method will perform all the

integration mapping of the receipt fields.

Required Field Types
Minimally a receipt must have a check number (can also be called order number, ticket number, or receipt

number) that is unique to the bill or order as well as a merchant identifier (EVO Merchant number), a

subtotal and a tax amount. Pay-By-Text integrations must have a customer phone number field within the

check details.

Optional Field Types
Optionally, the ticket can also have a table number, seat numbers, items and modifiers. These will all be

displayed on the payment screen to the customer.

Note: When designing the point of sale integration, keep in mind that once the check is paid and

closed be sure to include a simple way for the server staff to confirm the payment was completed.

*QR/PaybyText currently only available in the US market.

 Proprietary & Confidential 18

POST Check to Cloud
Integrate your POS to POST the JSON formatted checks to the DiamondCloud server and receive the id and a

payment URL in the response.

Note: the JSON of the check or bill must have the EVO assigned merchant MID.

POST
POST [https://qr.simpletabcloud.com/tomcat/command/{POS_ID}/push] HTTP/1.1

Accept: application/json

Content-Length: xxx

Content-Type: application/json

Host: [CLOUD URL]

{ [JSON OF CHECK] }

Response
HTTP/1.1 200 OK

Content-Type: application/json; charset=UTF-8

Keep-Alive: timeout=5, max=100

X-XSS-Protection: 1; mode=block, 1; mode=block

Transfer-Encoding: Identity

Referrer-Policy: origin, strict-origin-when-cross-origin

Permissions-Policy: geolocation=(),midi=(),sync-

xhr=(),microphone=(),camera=(),magnetometer=(),gyroscope=(),fullscreen=(self)

Date: Thu, 08 Dec 2022 12:49:46 GMT

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload, max-age=31536000;

includeSubDomains;

Connection: Keep-Alive

X-Content-Type-Options: nosniff

X-Frame-Options: DENY

Vary: Origin,Access-Control-Request-Method,Access-Control-Request-Headers

{

 "status": "success",

 "code": "",

 "message": "",

 "timestamp": "2022-01-13 12:04:10",

 "data": {

 "qr": "https://qr.simpletabqr.com/dashboard/#/nfc?tag=XXXXXXXX;3450",

 "id": "[cloud id]"

 }

}

Request Field Description Values Field Type
CLOUD URL DiamondCloud URL URL Static URL

POS_ID EVO assigned number indicating the POS

Merchant & Lane integration.

Specific to each ISV,

Merchant and Lane

16 Char ASCII

Response Field Description Values Field Type
id Cloud ID returned after push function is

performed.

Variable 32 Char ASCII

qr URL value for the POS system to provide to

the cardholder as a link or QR code.

Web URL ASCII

 Proprietary & Confidential 19

For QR integrations, after receiving the response URL… the POS should use a conversion tool or

script to generate a QR code representing the URL. This QR code should be prominently printed

on the customer check or invoice as in the example below…

Sample Printed Check
Date: 2/7/2020 Time: 7:00 pm

Check: 1469 Server: 2006

Seat 1

 Sandwich $5.99

 Soda $2.49

Seat 2

 Salad $4.99

Subtotal: $13.47

Tax: $1.08

Total: $14.55

Use your mobile phone camera
to scan the QR code and pay.

Camera not reading the QR? Visit scanqr.io on

the phones browser to scan.

 Proprietary & Confidential 20

GET Status of Checks
After receiving presenting the check payment device or QR code to the cardholder, the POS will need to

send a GET pull from DiamondCloud server to confirm payment status. The POS would need to

automatically perform the GET pull of open checks every 15-20 seconds until the check is Paid or Cancelled.

Also, if a callback URL is in use, these responses will be automatically written to the callback page.

GET
GET [https://qr.simpletabcloud.com/tomcat/command/{POS_ID}/pull/{Cloud_id}] HTTP/1.1

Accept: application/json

Host: [CLOUD URL]

{}

Response
HTTP/1.1 200 OK

Content-Type: application/json; charset=UTF-8

Keep-Alive: timeout=5, max=100

X-XSS-Protection: 1; mode=block, 1; mode=block

Transfer-Encoding: Identity

Referrer-Policy: origin, strict-origin-when-cross-origin

Permissions-Policy: geolocation=(),midi=(),sync-

xhr=(),microphone=(),camera=(),magnetometer=(),gyroscope=(),fullscreen=(self)

Date: Thu, 08 Dec 2022 12:49:46 GMT

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload, max-age=31536000;

includeSubDomains;

Connection: Keep-Alive

X-Content-Type-Options: nosniff

X-Frame-Options: DENY

Vary: Origin,Access-Control-Request-Method,Access-Control-Request-Headers

{ "merchantId": "87654321000401",

 "merchantName": "PAX Terminal Merchant",

 "transactionStatus": "APPROVED",

 "transactionType": "AUTH",

 "maskedCard": "372848XXXXX3000",

 "cardBrand": "AmericanExpress",

 "entryMethod": "",

 "dateTime": "2021-12-28T13:54:28.137",

 "batchNumber": "0210",

 "transactionId": "99db05f411304bcc850aa8913d9ceb01",

 "approvalCode": "016827",

 "requestAmount": "4.71",

 "approvedAmount": "4.71",

 "partialApproval": "false",

 "tip": "0.00",

 "cashback": "0.00",

 "tax": "",

 "surchargeFee": "0.00",

 "ebtCashBalance": "0.00",

 "ebtFoodBalance": "0.00",

 "giftCardBalance": "",

 "avsResult": "",

 "cvdResult": "",

 "aid": "A000000025010801",

 "tvr": "0000008000",

 "tsi": "null",

 "paymentToken": "99db05f4-1130-4bcc-850a-a8913d9ceb018ef4c58c-e102-430d-b0be-371686ff9d95" }

 Proprietary & Confidential 21

Request Field Description Values Field Type
CLOUD URL DiamondCloud URL URL Static URL

POS_ID EVO assigned number

indicating the POS Merchant &

Lane integration.

Specific to each ISV,

Merchant and Lane

16 Char ASCII

id Cloud ID returned after push

function is performed.

Variable 11 Char ASCII

Response Field Description Values Field Type

merchantId Merchants processing ID Varied by merchant Up to 16 digits
merchantName Merchant Name Varied by merchant Variable ASCII
transactionStatus Transaction response status APPROVED or

DECLINED

Variable ASCII

transactionType Transaction type performed AUTH, CAPTURE,

RETURN, VOID

Variable alphanumeric

maskedCard Masked card PAN with last 4

digits

X’s followed by last 4

of card.

Variable alphanumeric

cardBrand Card brand used in the

transaction

Visa, MasterCard,

AmericanExpress,

Discover, Debit, EBT

Variable alphanumeric

entryMethod Card account entry method Keyed, swipe, chip,

contactless

Variable alphanumeric

dateTime Date and Time of transaction

(UTC)

YYYY-MM-

DDTHH:MM:SS.SSS

YYYY-MM-

DDTHH:MM:SS.SSS
batchNumber Current batch number 4 digit value Numeric
transactionId Transaction ID generated

during authorization

32 character value 32 alphanumeric char

approvalCode Transaction approval code

from issuer

Variable Variable alphanumeric

requestAmount Amount requested for

payment.

00.01 – 999999.99 Variable numeric w/decimal

approvedAmount Amount approved 00.01 – 999999.99 Variable numeric w/decimal
partialApproval Indicator of partial approval true or false Alphanumeric
tip Tip amount added by

cardholder

00.01 – 999999.99 Variable numeric w/decimal

cashback Cashback amount added by

cardholder

00.01 – 999999.99 Variable numeric w/decimal

tax Tax amount processed 00.01 – 999999.99 Variable numeric w/decimal
surchargeFee Surcharge fee processed 00.01 – 999999.99 Variable numeric w/decimal
ebtCashBalance EBT cash benefit balance 00.01 – 999999.99 Variable numeric w/decimal
ebtFoodBalance EBT food stamp balance 00.01 – 999999.99 Variable numeric w/decimal
giftCardBalance Gift card remaining balance 00.01 – 999999.99 Variable numeric w/decimal
avsResult AVS result value if entered Result code and text Variable alphanumeric
cvdResult CVD/CVV result value if

entered

Result code and text Variable alphanumeric

aid Chip card Application AID Card application Variable alphanumeric
tvr Chip card TVR TVR value 10 digit numeric
tsi Chip card TSI TSI value 4 digit numeric
CardholderVerificationMethod Not in use - RFU Not in use NULL
paymentToken Card account payment token Token value 72 character variable

alphanumeric

 Proprietary & Confidential 22

Partially Approved Transaction Handling
Many Retail and Restaurant merchant category codes are required to accept partially approved

transactions. A partially approved transaction will be indicated by the transaction response details in the

“partialApproval” field. When this occurs the user at the terminal can opt to continue the transaction and

pay the balance with another card. When the remaining balance is paid, the cloud will return the second

transaction results using the same Cloud ID. This overwrites the first response where the partialApproval

occurred.

 Integrations using the Callback URL for responses will see 2 responses with the same cloud ID

returned.

 Integrations using the API to query the Cloud, will see the first response and should continue to

query the same Cloud ID for the second transaction to complete.

o Note if the user/customer opts to reverse the partially approved transaction or pay using

another method that does not happen on the payment terminal (ie Cash), the Integration

should mark the transaction completed and cease performing a query on the API.

Other REST API Calls
When working with checks in the cloud, a POS will likely need to either remove and cancel checks or reverse

a check for one reason or another.

Remove/Cancel Check
If a check is paid through another method or is no longer valid, the POS should send a remove. The

response will be a success/fail. After performing a remove the check will return a snap:cancelled upon

performing a /pull status.

PUT
PUT [https://qr.simpletabcloud.com/tomcat/command/{POS_ID}/remove/{Cloud_id}] HTTP/1.1

Accept: application/json

Host: [CLOUD URL]

{}

Response
HTTP/1.1 200 OK

Content-Type: application/json; charset=UTF-8

Keep-Alive: timeout=5, max=100

X-XSS-Protection: 1; mode=block, 1; mode=block

Transfer-Encoding: Identity

Referrer-Policy: origin, strict-origin-when-cross-origin

Permissions-Policy: geolocation=(),midi=(),sync-

xhr=(),microphone=(),camera=(),magnetometer=(),gyroscope=(),fullscreen=(self)

Date: Thu, 08 Dec 2022 12:49:46 GMT

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload, max-age=31536000;

includeSubDomains;

Connection: Keep-Alive

X-Content-Type-Options: nosniff

X-Frame-Options: DENY

Vary: Origin,Access-Control-Request-Method,Access-Control-Request-Headers

Best practice - After getting the 200 OK response, perform a GET status to verify that the check is

cancelled

 Proprietary & Confidential 23

Reverse – Void and Refund (QR/PayByText only)
If a check was paid and processed. The POS can submit a reverse to trigger a reversal of the amount. This

can be done on checks that are part of the current open batch (aka void) or on checks that were closed in a

prior batch (aka refund). The response will be a success/fail. After performing a reverse the check will return

a snap:cancelled upon performing a /pull status, while the status will still be APPROVED.

GET
GET [https://qr.simpletabcloud.com/tomcat/reverse/{POS_ID}/reverse/{Cloud_id}]

HTTP/1.1

Accept: application/x-www-form-urlencoded

Host: [CLOUD URL]

Response
HTTP/1.1 200 OK

Date: Mon, 27 Jul 2020 21:10:53 GMT

Server: Apache/2.4.18 (Ubuntu)

Status: 200 OK

Content-Length: 0

Keep-Alive: timeout=5, max=100

Connection: Keep-Alive

0: : :Success: : : {Cloud_id}

Note: The response message will contain a new Cloud_id which represents the reversal. It is not

echoing back the original id.

 Proprietary & Confidential 24

Authorization Tokens
Authorization Tokens will enhance the security of the integration for ISVs and Merchants. As of February

2023, all ISV’s performing an integration to DiamondCloud must include this security token on the HTTP

Header of all requests. All ISV’s integrated prior to February 2023, should plan to add the security tokens to

their integrations ASAP, as this will be a required update set later in 2023.

3 values are used to generate the HMAC Token

 ISV ID – Assigned by EVO for each ISV

 Shared Secret Key – 10 digit number repeated 7 times (established during certification)

 Plus 1 of 2 values below:

o For initial requests: POS ID – Assigned by EVO for each POS Lane

o For secondary requests and queries: Cloud Transaction ID – ID returned from cloud on initial

requests.

1. Reverse the ISV ID value then append the POS ID or Cloud ID to the end of the ISV ID, this is the data

to be encrypted.

2. The Shared Secret key will then be padded to a 70 byte value.

3. Finally, the HMAC SHA256 hash is applied and the token is generated.

Example of Token within HTTP Header
POST [https://{Cloud URL}/tomcat/command/{POS_ID}/sale] HTTP/1.1

Authorization: Bearer {Encrypted HMAC Token}

Accept: application/json

Host: [https://{Cloud URL}/]

Content-Type: application/json

{

 "amount": "1.00",

 "panDataToken": "" ,

 "tip_amount": "",

 "cash_back": ""

}

 Proprietary & Confidential 25

Error Responses – Payment Terminal
Transactions errors can occur, typical authorization declines will fit the same general format and data

provided with successful transactions. This is because a decline occurs at the issuing bank and EVO and the

DiamondCloud store a complete record of the transaction attempt. The challenge is when the transaction

fails at an earlier step in the process.

Here are some examples of these errors. Always review the transactionStatus field value to determine what

the issue may be.

Transaction is Pending Processing
"transactionStatus": "ERROR:Transaction is not found"

Action: Wait for customer and payment terminal to complete transaction.

Transaction Failed Offline
(ie Timeout on Payment Terminal - NEXGO)

"transactionStatus": "-504 Transaction Failed"

Action: Make sure the customer is ready to present payment and resend the transaction.

Transaction Failed Online
(ie Processing at EVO - NEXGO)

"transactionStatus": "-507 Transaction Failed"

Action: Payment Terminal or Card type is not configured on EVO for this merchant account, contact EVO

Support desk.

Transaction Cancelled At Terminal
(ie User canceled transaction - NEXGO)

"transactionStatus": "-501 Transaction Failed",

Action: Confirm cancellation reason, resend the transaction.

 Proprietary & Confidential 26

Error Responses – DiamondCloud
Below responses are returned from the DiamondCloud system only and are indicative of invalid requests via

the API or invalid setup on the DiamondCloud system. Errors not included could come from the payment

terminal or the authorization network.

Error Region

Error:Duplicate Trace Id LATAM / EU
Trace not used in USA

Error:Duplicate Follow Id LATAM / EU
Follow not used in USA

Error:POS ID does not exist All Regions

Error:POS Command failed, failed to sent command to terminal All Regions

Error:Device does not exist All Regions

Error:Command failed to send to terminal All Regions

Error:Unknown Server or Command All Regions

Error:The prior transaction is not found [transactionId] All Regions

Error:The SNAP Transaction Id is empty USA

Error:Settlement Completed – TRXN Not Allowed All Regions

Error:The RefNum is empty [transactionId] USA

Error:The ECRRefNum is empty [transactionId] USA

Error:The special partial index is not found All Regions

Error:The payment index is not found All Regions

Error:The bill is not paid yet, can not void All Regions

Error:The bill is not paid yet, can not return All Regions

Error:Merchant ID mismatch or snap transaction is not found All Regions

Error:Get Payfabric transaction details failed US Manual Entry Phone

transactions

 Proprietary & Confidential 27

Sample Printed Check
Date: 2/7/2020 Time: 7:00 pm

Check: 1469 Server: 2006

Seat 1

 Sandwich $5.99

 Soda $2.49

Seat 2

 Salad $4.99

Subtotal: $13.47

Tax: $1.08

Total: $14.55

XML Data
<?xml version="1.0" encoding="UTF-8" ?>

<root>

 <localtime>2020-02-

07T21:07:00.000</localtime>

 <receipt_id>1469</receipt_id>

 <sale_type/>

 <taxes>

 <name>Tax</name>

 <value>1.08</value>

 </taxes>

 <staff>

 <id>2006</id>

 <has_original_id>true</has_original_id>

 </staff>

 <products>

 <seat>1</seat>

 <quantity>1</quantity>

 <discounts/>

 <price>5.99</price>

 <name>Sandwich</name>

 <modifiers/>

 </products>

 <products>

 <seat>1</seat>

 <quantity>1</quantity>

 <discounts/>

 <price>2.49</price>

 <name>Soda</name>

 <modifiers/>

 </products>

 <products>

 <seat>2</seat>

 <quantity>1</quantity>

 <discounts/>

 <price>4.99</price>

 <name>Salad</name>

 <modifiers/>

 </products>

 <consumer_id>11-1</consumer_id>

 <payment_methods/>

 <shop_id>1535509869033384</shop_id>

 <total>14.55</total>

 <is_void>false</is_void>

 <discounts/>

 <subtotal>13.47</subtotal>

</root>

JSON Data
{

 "root": {

 "localtime": "2020-02-07T21:07:00.000",

 "receipt_id": "1469",

 "sale_type": "",

 "taxes": {

 "name": "Tax",

 "value": "1.08"

 },

 "staff": {

 "id": "2006",

 "has_original_id": "true"

 },

 "products": [

 {

 "seat": "1",

 "quantity": "1",

 "discounts": "",

 "price": "5.99",

 "name": "Sandwich",

 "modifiers": ""

 },

 {

 "seat": "1",

 "quantity": "1",

 "discounts": "",

 "price": "2.49",

 "name": "Soda",

 "modifiers": ""

 },

 {

 "seat": "2",

 "quantity": "1",

 "discounts": "",

 "price": "4.99",

 "name": "Salad",

 "modifiers": ""

 }

],

 "consumer_id": "11-1",

 "payment_methods": "",

 "shop_id": "1535509869033384",

 "total": "14.55",

 "is_void": "false",

 "discounts": "",

 "subtotal": "13.47"

 }

}

Example - Check Converted from XML to JSON

 Proprietary & Confidential 28

Testing Endpoint
https://qr-cert.simpletabcloud.com/tomcat

Log in and use the test utility:

User: simpletabcloud Pass: 963687

https://qr-cert.simpletabcloud.com/tomcat/web/#/home/command-test

Production Endpoint
https://qr.simpletabcloud.com/tomcat

https://qr-cert.simpletabcloud.com/tomcat
https://qr-cert.simpletabcloud.com/tomcat/web/#/home/command-test
https://qr.simpletabcloud.com/tomcat

	DiamondCloud
	What is DiamondCloud?
	ISV Considerations
	Processing Types
	Android Payment Terminal Types
	Differences based on Terminal/App
	Sending Tip Amounts
	Sending Cashback Amounts

	Transaction Results Handling

	Instant Integration
	Request Formatting
	List of Transaction Request Commands
	Request Responses
	Request Transaction Status - Details

	Transaction Examples
	Sale – Credit/Debit
	POST
	Response

	Reverse/Void – Credit
	POST
	Response

	Return – Credit
	POST
	Response

	BatchClose – Close Payment Terminal Batch
	POST
	Response

	Optional Transaction Types
	Tip Adjust – Credit
	POST
	Response

	Auth – Credit
	POST
	Response

	Capture – Credit
	POST
	Response

	Gift Card Activation
	POST
	Response

	Gift Card Reload
	POST
	Response

	Gift Card Redemption
	POST
	Response

	Gift Card Balance Inquiry
	POST
	Response

	EBT Food Stamp & Cash Benefit Sale
	POST
	Response

	EBT Balance Inquiry
	POST
	Response

	EBT Food Stamp Return
	POST
	Response

	Pairing/Connection Test
	POST
	Response

	Partially Approved Transaction Handling

	Queued Bills Integration (Device and QR/PayByText)*
	Convert Checks to JSON
	Required Field Types
	Optional Field Types

	POST Check to Cloud
	POST
	Response

	GET Status of Checks
	GET
	Response

	Partially Approved Transaction Handling
	Other REST API Calls
	Remove/Cancel Check
	PUT
	Response

	Reverse – Void and Refund (QR/PayByText only)
	GET
	Response

	Authorization Tokens
	Example of Token within HTTP Header

	Error Responses – Payment Terminal
	Transaction is Pending Processing
	Transaction Failed Offline
	Transaction Failed Online
	Transaction Cancelled At Terminal

	Error Responses – DiamondCloud
	Example - Check Converted from XML to JSON
	Testing Endpoint
	Production Endpoint

